BEX1/ARF1A1C is Required for BFA-Sensitive Recycling of PIN Auxin Transporters and Auxin-Mediated Development in Arabidopsis
نویسندگان
چکیده
Correct positioning of membrane proteins is an essential process in eukaryotic organisms. The plant hormone auxin is distributed through intercellular transport and triggers various cellular responses. Auxin transporters of the PIN-FORMED (PIN) family localize asymmetrically at the plasma membrane (PM) and mediate the directional transport of auxin between cells. A fungal toxin, brefeldin A (BFA), inhibits a subset of guanine nucleotide exchange factors for ADP-ribosylation factor small GTPases (ARF GEFs) including GNOM, which plays a major role in localization of PIN1 predominantly to the basal side of the PM. The Arabidopsis genome encodes 19 ARF-related putative GTPases. However, ARF components involved in PIN1 localization have been genetically poorly defined. Using a fluorescence imaging-based forward genetic approach, we identified an Arabidopsis mutant, bfa-visualized exocytic trafficking defective1 (bex1), in which PM localization of PIN1-green fluorescent protein (GFP) as well as development is hypersensitive to BFA. We found that in bex1 a member of the ARF1 gene family, ARF1A1C, was mutated. ARF1A1C localizes to the trans-Golgi network/early endosome and Golgi apparatus, acts synergistically to BEN1/MIN7 ARF GEF and is important for PIN recycling to the PM. Consistent with the developmental importance of PIN proteins, functional interference with ARF1 resulted in an impaired auxin response gradient and various developmental defects including embryonic patterning defects and growth arrest. Our results show that ARF1A1C is essential for recycling of PIN auxin transporters and for various auxin-dependent developmental processes.
منابع مشابه
The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth
Exchange factors for ARF GTPases (ARF-GEFs) regulate vesicle trafficking in a variety of organisms. The Arabidopsis protein GNOM is a brefeldin A (BFA) sensitive ARF-GEF that is required for the proper polar localization of PIN1, a candidate transporter of the plant hormone auxin. Mutations in GNOM lead to developmental defects that resemble those caused by interfering with auxin transport. Bot...
متن کاملP-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells.
ATP binding cassette (ABC) transporters transport diverse substrates across membranes in various organisms. However, plant ABC transporters have only been scantily characterized. By taking advantage of the auxin-sensitive Arabidopsis thaliana root hair cell and tobacco (Nicotiana tabacum) suspension cell systems, we show here that Arabidopsis P-glycoprotein4 (PGP4) displays auxin efflux activit...
متن کاملRole of the Arabidopsis PIN6 Auxin Transporter in Auxin Homeostasis and Auxin-Mediated Development
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we ...
متن کاملCell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway
Coordination of cell and tissue polarity commonly involves directional signaling. In the Arabidopsis root epidermis, cell polarity is revealed by basal, root tip-oriented, hair outgrowth from hair-forming cells (trichoblasts). The plant hormone auxin displays polar movements and accumulates at maximum concentration in the root tip. The application of polar auxin transport inhibitors evokes chan...
متن کاملTrafficking modulator TENin1 inhibits endocytosis, causes endomembrane protein accumulation at the pre-vacuolar compartment and impairs gravitropic response in Arabidopsis thaliana
Auxin gradients are established and maintained by polarized distribution of auxin transporters that undergo constitutive endocytic recycling from the PM (plasma membrane) and are essential for the gravitropic response in plants. The present study characterizes an inhibitor of endomembrane protein trafficking, TE1 (trafficking and endocytosis inhibitor 1/TENin1) that reduces gravitropic root ben...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 55 شماره
صفحات -
تاریخ انتشار 2014